

First author:

Title: Dr.

First name: Birgit Last name: Wiltschi

Institutions: Austrian Centre of Industrial Biotechnology – acib GmbH and Graz University

of Technology

Address: Petersgasse 14, 8010 Graz, Austria

Email: birgit.wiltschi@acib.at Phone: +43 316 873-9313

Co-authors (with their institutions):

Meritxell Galindo Casas, Austrian Centre of Industrial Biotechnology – acib GmbH, Graz,

Austria

Jürgen Mairhofer, Patrick Stargardt, Lukas Feuchtenhofer & Florian Weiß, enGenes

Biotech GmbH, Vienna, Austria

Biography

Birgit Wiltschi studied biochemistry at Graz University of Technology in Graz, Austria, where she earned her PhD in 2002. From 2002 to 2005 she was a postdoctoral scientist at the Membrane Biochemistry Department of the Max Planck Institute of Biochemistry in Martinsried in Germany. In 2005, Birgit Wiltschi became a senior scientist in the Molecular Biotechnology group at the same institution and in 2010 she changed to the Institute of Biology II & BIOSS - Centre for Biological Signalling Studies of the Albert-Ludwigs-University of Freiburg, Germany, as a group leader. Since November 2011 she has been the head of the Synthetic Biology Group at the Austrian Centre of Industrial Biotechnology – acib GmbH. Her research focusses on protein engineering with non-canonical amino acids in industrial biotechnology.

Abstract title:

Engineering of proteins with non-canonical amino acids in industrial biotechnology

Abstract

Non-canonical amino acids are not encoded by the genetic code, but they can participate in protein translation under controlled conditions. Most of the non-canonical amino acids carry unusual side chains such that their translation into a target protein sequence can provoke structural, chemical, or functional modifications normally not found in nature. Non-canonical amino acids with bioorthogonal reactive handles are of particular interest because they facilitate the selective conjugation with other molecules at a pre-defined position in the protein. This results in the directed chemical modification of proteins with superior control.

The engineering of proteins with non-canonical amino acids has gained increasing popularity in the academic environment. However, the method faces specific challenges upon upscaling, which still hamper its industrial application. In my contribution, I will highlight the challenges of the method in industrial biotechnology and discuss possible approaches to meet them.